Privacy Preserving Clustering by Hybrid Data Transformation Approach

نویسندگان

  • M. Naga lakshmi
  • Sandhya Rani
چکیده

Numerous organizations collect and share large amounts of data due to the proliferation of information technologies and internet. The information extracted from these databases through data mining process may reveal private information of individuals. Privacy preserving data mining is a new research area, which allows sharing of privacy-sensitive data for analysis purpose. In this paper a hybrid data transformation method is proposed for privacy preserving clustering in centralized database environment by taking the advantage of two existing techniques Principle Component Analysis (PCA) and Non negative Matrix Factorization (NMF). The experimental results proved that the proposed hybrid method protects private data of individuals and also providing valid clustering results. Keywords-Privacy preservation, clustering, Principle component analysis, Non negative Matrix Factorization, Hybrid Method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Data Transformation Approach for Privacy Preserving Clustering

A new stream of research privacy preserving data mining emerged due to the recent advances in data mining, Internet and security technologies. Data sharing among organizations considered to be useful which offer mutual benefit for business growth. Preserving the privacy of shared data for clustering was considered as the most challenging problem. To overcome the problem, the data owner publishe...

متن کامل

SVD based Data Transformation Methods for Privacy Preserving Clustering

Nowadays privacy issues are major concern for many government and other private organizations to delve important information from large repositories of data. Privacy preserving clustering which is one of the techniques emerged to addresses the problem of extracting useful clustering patterns from distorted data without accessing the original data directly. In this paper two hybrid data transfor...

متن کامل

A Hybrid Privacy Preserving Approach in Data Mining

Data mining algorithms extracts the unknown interesting patterns from large collection of data set. Some clandestine or secret information may be exposed as part of the data mining process. In this paper we put forward a hybrid approach for achieving privacy during the mining procedure. The first step is to sanitize the original data using a geometrical data transformation. In the second stage ...

متن کامل

Privacy Preserving Clustering Based on Fuzzy Data Transformation Methods

Knowledge extraction process poses certain problems like accessing sensitive, personal or business information. Privacy invasion occurs owing to the abuse of personal information. Hence privacy issues are challenging concern of the data miners. Privacy preservation is a complex task as it ensures the privacy of individuals without losing the accuracy of data mining results. In this paper, fuzzy...

متن کامل

Revisiting "Privacy Preserving Clustering by Data Transformation"

Preserving the privacy of individuals when data are shared for clustering is a complex problem. The challenge is how to protect the underlying data values subjected to clustering without jeopardizing the similarity between objects under analysis. In this short paper, we revisit a family of geometric data transformation methods (GDTMs) that distort numerical attributes by translations, scalings,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013